Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration.
نویسندگان
چکیده
Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features.
منابع مشابه
Title: Mechanical Signals at the Base of a Rat Vibrissa: the Effect Of
Title: Mechanical signals at the base of a rat vibrissa: The effect of 1 intrinsic vibrissa curvature and implications for tactile exploration 2 3 Running Title: May the force be whisk you 4 5 Authors: Brian W. Quist 6 Biomedical Engineering Department 7 Northwestern University 8 2145 Sheridan Rd 9 Evanston, IL 60208 10 11 Mitra J.Z. Hartmann 12 Mechanical Engineering Department 13 Biomedical E...
متن کاملModeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.
During exploratory behavior, rats brush and tap their whiskers against objects, and the mechanical signals so generated constitute the primary sensory variables upon which these animals base their vibrissotactile perception of the world. To date, however, we lack a general dynamic model of the vibrissa that includes the effects of inertia, damping, and collisions. We simulated vibrissal dynamic...
متن کاملVariation in Young's modulus along the length of a rat vibrissa.
Rats use specialized tactile hairs on their snout, called vibrissae (whiskers), to explore their surroundings. Vibrissae have no sensors along their length, but instead transmit mechanical information to receptors embedded in the follicle at the vibrissa base. The transmission of mechanical information along the vibrissa, and thus the tactile information ultimately received by the nervous syste...
متن کاملVibrissa resonance as a transduction mechanism for tactile encoding.
We present evidence that resonance properties of rat vibrissae differentially amplify high-frequency and complex tactile signals. Consistent with a model of vibrissa mechanics, optical measurements of vibrissae revealed that their first mechanical resonance frequencies systematically varied from low (60-100 Hz) in longer, posterior vibrissae to high ( approximately 750 Hz) in shorter, anterior ...
متن کاملCALL FOR PAPERS Neurophysiology of Tactile Perception: A Tribute to Steven Hsiao Tactile signals transmitted by the vibrissa during active whisking behavior
Huet LA, Schroeder CL, Hartmann MJ. Tactile signals transmitted by the vibrissa during active whisking behavior. J Neurophysiol 113: 3511–3518, 2015. First published April 1, 2015; doi:10.1152/jn.00011.2015.—The rodent vibrissal-trigeminal system is one of the most widely used models for the study of somatosensation and tactile perception, but to date the field has been unable to quantify the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 107 9 شماره
صفحات -
تاریخ انتشار 2012